IceCube Calibration Plan

Draft Version 2.0

July 8, 2004

Kurt Woschnagg
University of California at Berkeley
L3 lead, 1.5.3 Detector Characterization

Abstract

This document presents a high level plan for calibrations performed during and after string deployment in IceCube. The techniques to be used are described and for each calibration a plan is presented. Dedicated calibration hardware is discussed and monitoring considerations briefly touched upon.
Contents

1 Purpose and Scope 3

2 Low-level calibrations 3

2.1 Timing calibration (WBS 1.5.3.2.3) 3

2.1.1 Requirements 3

2.1.2 Plan 3

2.1.3 Status 4

2.1.4 Monitoring considerations 5

2.1.5 Major WBS dependencies 5

2.2 Geometry calibration (WBS 1.5.3.2.4) 5

2.2.1 Requirements 5

2.2.2 Plan 5

2.2.3 Status 8

2.2.4 Monitoring considerations 8

2.2.5 Major WBS dependencies 8

2.3 Charge calibration (WBS 1.5.3.2.2) 8

2.3.1 Requirements 8

2.3.2 Plan 8

2.3.3 Status 9

2.3.4 Monitoring considerations 9

2.3.5 Major WBS dependencies 9

2.4 Angular DOM acceptance 9

2.4.1 Requirements 9

2.4.2 Plan 10

2.4.3 Status 10

2.4.4 Monitoring considerations 10

2.4.5 Major WBS dependencies 10

2.5 Optical properties of ice (WBS 1.5.3.2.7) 11

2.5.1 Requirements 11

2.5.2 Plan 11

2.5.3 Status 12

2.5.4 Monitoring considerations 12

2.5.5 Major WBS dependencies 12

3 High-level calibrations 12

3.1 Vertex resolution (WBS 1.5.3.2.6) 13

3.1.1 Requirements 13

3.1.2 Plan 13

3.1.3 Status 14

3.1.4 Major WBS dependencies 14

3.2 Pointing accuracy and pointing resolution (WBS 1.5.3.2.5) 14

3.2.1 Requirements 14

3.2.2 Plan 14

3.2.3 Status 15

3.2.4 Major WBS dependencies 15

3.3 Energy calibration (WBS 1.5.3.2.6) 15

3.3.1 Requirements 16

3.3.2 Plan 16

3.3.3 Major WBS dependencies 17

4 Summary of calibration devices 17

5 Detector monitoring (WBS 1.5.3.1) 18

6 Calibration database (WBS 1.5.3.2.8) 18

6.1 Calibration data from low-level calibrations 19

6.2 Calibration data needed for high-level calibrations 19

7 Calibrating the first four strings 19
1 Purpose and Scope

This document presents a plan for calibrations to be performed in IceCube during and after string deployment, as covered by WBS element 1.5.3.2. Plans for pre-deployment calibrations of different components in the lab are not included. Requirements imposed by science goals are listed and briefly discussed, but their physics justifications are presented elsewhere (e.g. in [1]). For each identified calibration topic, a plan is presented to meet the requirements and the methods to be used are described. The needs for monitoring of calibration constants are briefly discussed but will be more thoroughly covered by the Monitoring Plan. This document also discusses dependencies on tasks covered by other WBS elements, such as Reconstruction (1.5.2) and AMANDA-IceCube Integration (1.5.4).

The need for dedicated calibration devices (described in more detail in other documents) is discussed where relevant. Calibration data are either generated in the DOM firmware and are part of the normal data stream, or will be generated and triggered by external sources.

The calibrations discussed here can be roughly divided into two categories: low-level calibrations to be applied to the recorded raw data, and high-level, or physics, calibrations. This document is structured according to this division.

2 Low-level calibrations

The DOM records a waveform whenever one or more photons arriving at the PMT convert into one or more photoelectrons (PE). The low-level calibrations are applied to extract basic photon hit parameters from these measurements. The time of the leading edge of each waveform has to be related to the times for all other waveforms in the event; the relation between the integrated charge in the waveform with the number of PEs has to be known; the relative position of the DOM to all other DOMs must be known as well as the absolute position of the array. These parameters must be known at all times for which data is recorded. They are stored in a calibration database and are monitored to detect trends or anomalies that are indicative of problems.

The following subsections discuss the low-level calibrations in turn.

2.1 Timing calibration (WBS 1.5.3.2.3)

2.1.1 Requirements

The overall requirement for knowing when each recorded photon hits a DOM, relative to all other hits in the event, is 7 ns [1]. All hit times, i.e., all waveforms, have to be calibrated individually. The timing requirement is imposed by requirements on track reconstruction and cascade reconstruction.

2.1.2 Plan

Timing calibration in IceCube is performed in a number of separate steps:
1. Each recorded waveform, or hit, is time-stamped by a free-running local clock in the DOM, using a two-stage method that produces a coarse and a fine time stamp. When a PMT signal triggers the discriminator, the resulting pulse is synchronized to the next DOM clock edge at which time it causes the ATWD to launch. The coarse time stamp is the clock value at the instant of ATWD launch. The fine time stamp marks the position of the leading edge of the waveform within the resulting ATWD record.

2. These local times are then translated to master clock times at the surface, and ultimately linked to GPS times. The conversion between the local clock time and the master clock time is provided by an automated time-synchronization procedure. The surface DAQ periodically transmits bipolar time-mark signals, synchronized to the master clock, to each DOM where the arriving dispersed and attenuated pulses are digitized and time-stamped locally. This procedure provides knowledge on local clock frequency and phase, relative to the master clock.

3. Slightly differing physical properties of the twisted quads introduce an offset to the measured clock phase by introducing differences in the signal propagation time through the cables. A Reciprocal Active Pulsing calibration (RAPcal) method is used to measure the relative signal propagation times, or cable electrical lengths. The RAPcal method performs symmetric round-trip measurements with identical time-mark pulses that are sent in both directions, initialized either by the DAQ or in the DOM, and separated by a known wait period.

The RAP calibration will be invoked repeatedly at periodic intervals as part of normal DAQ operations, and the results from these measurements will be stored in a database. Cable round trip times should be stable with time once the water column in the hole is refrozen and has reached ambient temperature.

One part of the timing calibration, the PMT transit time and its dependence on high voltage, can be measured independently, using the on-board LED. This measurement will be performed both in the lab prior to deployment (and the results stored in the DOM database) and in situ for all DOMs.

The timing calibration will be verified offline (after position calibration and reconstruction), e.g., by studying residual hit times in data from down-going muon tracks or in-situ flashers. Simulations of the same data with realistic ice properties will be used for comparison of these time distributions and their dependence on distance from the source (muon track or flasher). Based on experiences with the use of down-going muons for timing calibration in AMANDA, this method is expected to detect systematic shifts in the timing calibration for individual DOMs or groups of DOMs to an accuracy of 5 ns.

2.1.3 Status

RAPcal is a new calibration method, not routinely used in AMANDA, but partially introduced and tested on the string 18 DOMs. The individual parts of this timing calibration
have been demonstrated to work in-situ on string 18 and have shown to give a combined uncertainty under 7 ns. The procedure will be automated and incorporated into the DAQ. Control and monitoring software has to be written and plenty of testing has to be performed.

2.1.4 Monitoring considerations

For each DOM, the local time stamp can be translated to global time by a linear transformation, say $t_{\text{global}} = a \cdot t_{\text{local}} + b$. The two parameters a and b are time dependent and their values need to be stored in the CalDB and monitored. Since a and b are functions of clock drift and electrical cable length is may be conceptually simpler to monitor these parameters instead.

We also need to monitor the performance of RAPcal at a higher level. For this high-level monitoring, we will use in-situ data from the flasher boards, where the location of the source and the timing of the light pulses are known, as well as reconstructed data from down-going muons. Parameters to monitor could include time residuals from muon track fits as function of impact parameter and track direction, and time residuals as function of distance to and brightness of flasher source.

2.1.5 Major WBS dependencies

The main dependency for timing calibration is on DAQ software (1.3.4) for implementation and automation, and on Reconstruction (1.5.2) for verification with muons and flasher data. The development of verification tools depends on the availability of software and simulations under Data Systems (1.4).

2.2 Geometry calibration (WBS 1.5.3.2.4)

2.2.1 Requirements

The relative positions of individual DOMs, and the absolute depth and orientation of the entire array, must be known to within one meter. This requirement ensures that the systematic uncertainty from position calibration is smaller than the 7 ns timing requirement (for event reconstruction these two uncertainties are complementary). The speed of light in ice is 4.4 ns per meter. The requirement is imposed by requirements on track and cascade reconstruction and by requirements on pointing accuracy of the array.

2.2.2 Plan

Determining the detector geometry involves a number of methods which are combined to yield an accuracy in absolute position of individual DOMs of better than 0.5 meters (shown in AMANDA). Some measurements must be done during deployment, while others can be repeated and improved after deployment. The elements of the position calibration are:
• The absolute location of individual holes, and therefore the orientation of the array in the horizontal plane, will be determined with a GPS survey of the positions of the hole centers on the surface. All holes will first be surveyed prior to drilling, and then again after deployment since the position of the actual hole will not necessarily coincide with the pre-surveyed position within the required accuracy. The centers of the holes, i.e., the actual locations that are surveyed, will be clearly marked at the surface to ensure that any future surveys will use the same points. Individual hole centers can be surveyed to within 10 cm, but the somewhat irregular profiles of the holes in the firn layer (the top 40-50 m of the ice) impose larger uncertainties. The GPS survey also gives absolute elevations for all surveyed holes.

• The absolute depths will be based on pressure sensor readings during deployment. Each string will have one high-precision, temperature-compensated pressure sensor located at the bottom end, just below the deepest DOM. This sensor will also be used to monitor the depth of the string during deployment and to make sure the target depth is reached. In addition, each string will be equipped with a simpler pressure sensor in the upper part of the instrumented section which will serve as backup for deployment monitoring and will be used for a cross-check of final depth and to monitor string stretching.

• The well depth, i.e. the vertical distance between the top of the hole (whose elevation is measured as part of the GPS survey) and the water level in the hole (which is the point from which depth is measured with the pressure sensors) is measured with an optical device, a laser distance meter, at the close of deployment of the string. This measurement must be simultaneous with the final depth reading from the pressure sensors since refreezing of the water column continuously changes these complementary quantities (well depth and pressure adds up to total depth at bottom of string). The laser sensor enables the well depth to be measured to within a few centimeters.

• The LED flasher boards [3] will be used to record time-of-flight data to neighboring strings. Interstring data will be taken for a large set of emitters (at least five on each string) and receiving DOMs on all nearest-neighbor strings. A global, over-constrained fit to these time distributions is then used to determine relative string locations in three dimensions. This gives a relative array geometry, but only for entire strings, not individual modules. For this method to work, we need the LED flashers to be bright enough to get sufficiently high data rates (i.e. well above the noise rates) on at least nine (four above and four below the one closest to the emitter) DOMs on all the nearest strings (i.e. up to six for strings not on the perimeter of the hexagonal string arrangement). With a string spacing of 125 m and a vertical DOM spacing along the strings of 17 m, the light has to be seen at sufficient levels at least 150 m from the emitter. This leads to light level and power requirements for the LED flashers boards [3]. The optical interstring method for measuring the relative geometry gives an accuracy of better than 1 m in the horizontal plane and better than 0.5 m vertically.
• The cable spool will be equipped with a payout system that measures the length of cable deployed in the hole. Since stretching will be similar for all cables and therefore predictable, this enables a cross-check on the depth measurements and provides backup in case all pressure sensors fail on the string. The payout readout will also be used in combination with the pressure readout to monitor string deployment.

• The drill logs will be used to extract horizontal drifts of the holes from a vertical line from data recorded during drilling. Hole profiles, i.e., horizontal drifts versus depth, reconstructed from this data are used to adjust the positions of individual DOMs from the interstring fits (which only gives string positions, i.e., averaged DOM positions).

• A muon tomography method is being developed and tested on AMANDA data which uses down-going muon data to determine the relative positions in space of individual modules. A high-statistics sample of minimum bias data, effectively consisting entirely of down-going cosmic-ray induced muons, is processed and track reconstructed with a nominal geometry determined by a combination of the above techniques. Each DOM is then moved around virtually in three dimensions around the nominal position and the changing contribution of its hits to the likelihood function is recorded to create a likelihood grid. The minimum in this grid is taken as the corrected position of the DOM.

• Some strings will be equipped with an acoustical televiewer that will be used to map the contour of the hole during deployment, providing calibration data for drilling.

• IceTop can be used to make a geometry survey of IceCube DOMs by looking at coincident events. The distributions of amplitude and time for hits in IceCube modules are compared to expectations from down-going muon tracks tagged by IceTop. A separate document outlining the methods for using IceTop-IceCube coincident events for calibrations is in preparation [10].

All of the above methods (except acoustical hole logging and optical well-depth logging) have been developed and used successfully in AMANDA. Application of the muon tomography method showed that positions of individual OMIs can be determined to within the radius of the hole, i.e., 30 cm. This precision makes it possible to study glacial ice flow. A recent study [4] concludes that the ice sheet at South Pole is frozen down to bedrock, and estimates that its horizontal velocity is ~10 m/yr from the surface down to ~2000 m and then monotonically decreases down to zero at bedrock, around 2800 m deep. The best estimate from this study is that the deepest AMANDA modules (at ~2300 m) will lag behind the bulk of the detector (which is shallower than 2000 m) by $\lesssim1$ m/yr. In IceCube the effect could be even larger for the deepest modules. The muon survey method should be sufficiently sensitive to verify this effect and to calibrate the geometry periodically to track these possible drifts.
2.2.3 Status

The methods to be used for geometry calibration are mostly known and tested, and we have lots of experience from AMANDA. The main work is to adapt these methods to IceCube data which includes writing software. Flasher boards have to be designed according to calibration requirements, and their control software integrated into the DAQ system.

2.2.4 Monitoring considerations

The geometry should only change very slowly, if at all. There is no apparent need for geometry monitoring beyond an annual comparison of results from the muon tomography method.

2.2.5 Major WBS dependencies

The main dependency for geometry calibration is on Reconstruction (1.5.2) and In-Ice Devices (1.3.1) for the interstring method, on Deployment (1.2.3) and Drilling (1.2.2) for the non-optical preliminary geometry calibration, and on Reconstruction (1.5.2) for the muon tomography method. The development of verification tools depends on the availability of software and simulations under Data Systems (1.4). Geometry verification with coincident IceTop events also depends on IceTop (1.3.2).

2.3 Charge calibration (WBS 1.5.3.2.2)

2.3.1 Requirements

A crucial part of track and energy reconstruction will be to know the number of photoelectrons (PE) corresponding to the charge measured in each waveform for each DOM. The global requirement from science considerations on the absolute charge calibration for DOMs is 5% [1]. The range and degree of linearity of the DOM response must also be measured, as well as the saturation level and behaviour. The dynamic range of the PMT alone and of the fully assembled DOM will be measured in the lab for all modules.

2.3.2 Plan

For each DOM, the charge corresponding to single photoelectrons (SPEs) is measured using an on-board pulsed LED, mounted on the DOM mainboard. Its light is collimated, attenuated and injected into an optical fiber which runs from the flasher board along the neck of the PMT down into the optical gel where it ends in front of the PMT. It is then run at such a low light level that only a small fraction (<10%) of the emitted pulses are recorded as PEs, to ensure that the resulting charge spectrum is made up dominantly of SPE hits. The integrated charge corresponding to the SPE peak location is determined together with the width of the SPE peak. The SPE peak location will be known to within 5%, but the
spread of the peak, which depends on PMT characteristics, dominates the uncertainty in the calibrated charge.

The SPE peak, linearity, dynamic range and saturation behavior of every DOM will be measured in the lab as function of temperature and high voltage applied to the PMT and the results will be stored in a DOM database [8, 9]. Some of these measurements (SPE peak and width) are then repeated in the ice at regular intervals. For the in-situ measurements, calibration data is taken with the on-board LEDs periodically during normal DAQ operations (every TBD min for TBD s). This data (which will be unambiguously tagged for calibration purposes) is part of the normal data stream and is separated from physics data after it reaches the surface, during online data processing.

The charge calibration will be verified offline (after position calibration and event reconstruction) using data from down-going muons and from flasher boards. Such data can also be used to perform the in-situ charge calibration: muon data can be used to get SPE data and the flashers can be used to measure linearity and saturation effects.

2.3.3 Status

The procedure used for in-situ charge calibration is relatively straight-forward. Control software for the onboard LEDs has to be written and integrated into DAQ. Software for SPE peak fitting and extraction has to be written.

2.3.4 Monitoring considerations

The calibration parameters resulting from the periodic charge calibrations will be stored in a calibration database, monitored and compared to the corresponding parameters from measurements in the lab which are retrieved from the DOM database. Relevant parameters to be monitored include: SPE peak position and width, DOM temperature, linearity range, and saturation level.

2.3.5 Major WBS dependencies

The main dependency for charge calibration is on DAQ software (1.3.4) for implementation and automation, and on Reconstruction (1.5.2) for verification with muons and flasher data. The development of verification tools depends on the availability of software and simulations under Data Systems (1.4).

2.4 Angular DOM acceptance

2.4.1 Requirements

The angular dependence of the DOM acceptance must be known to a high degree of accuracy for reliable reconstruction and simulations. In addition, the expected range of variations between individual DOMs must be known.
2.4.2 Plan

In the lab, the intrinsic angular dependence will be measured prior to deployment by mapping the response of fully assembled DOMs to light from different sources (beamed lasers? plane wave?) at all possible incident angles [?]. The angular dependence of the photon detection efficiencies for the DOMs measured in the lab differs from the effective angular acceptance in the ice due to the optical properties of the refrozen water column, the so-called hole ice, in which the DOMs are embedded. The optical properties of the hole ice differ from those of the bulk ice because of tiny trapped air bubbles that modify the angular acceptance of the modules.

There are a number of possible approaches to measuring the angular acceptance in the ice which could be explored:

- If the optical properties of the hole ice (mainly the reduction in scattering length introduced by the trapped air bubbles surrounding the DOMs) are measured in situ, the effect on the angular (and absolute) DOM acceptance can be estimated from detector simulations.
- The effective angular dependence can be measured in the ice, using known signals from light sources (such as the flashers) or by studying the response to cosmic ray muons.

These measurements are inherently difficult and any effects on optical data (from muons or flashers) introduced by the hole ice are very difficult to disentangle from effects in the bulk ice.

A different approach would be to freeze a block of ice with trapped air bubbles around a DOM in the lab and directly measure (with light sources as above) how the angular acceptance is altered. Bubble concentration and configuration can be varied in these measurements.

2.4.3 Status

Although there are some schematic ideas on how to (possibly) measure the angular acceptance (or the hole ice properties) in situ, they are at a speculative level and need much more thought. There is currently no definitive plan for such measurements.

2.4.4 Monitoring considerations

As the angular acceptance is not expected to change over time, no monitoring is required.

2.4.5 Major WBS dependencies

As there is no plan for in-situ calibrations of the angular DOM acceptance, no dependencies have been identified.
2.5 Optical properties of ice (WBS 1.5.3.2.7)

2.5.1 Requirements

In order to accurately simulate the propagation of photons through the ice, the basis for most IceCube physics simulations, the optical properties of the ice must be known to a sufficient accuracy for all relevant wavelengths and over the entire instrumented depth range. The relevant optical properties are absorption length and effective scattering length (sometimes expressed as their reciprocal coefficients), the mean scattering angle (which is used to define the effective scattering length in a Mie scattering scenario) and the refractive index of the ice.

2.5.2 Plan

AMANDA has measured absorption and scattering properties between 340 and 540 nm for depths between 1000 and 2400 m to within 10% [5]. The wavelength dependence of both absorption and scattering have been determined, as well as the depth dependence. The optical properties are dominated by impurities in the form of dust particles, deposited in horizontal bands with varying composition. In the studied depth range the effective scattering coefficient varies by up to a factor 4, and absorption by slightly less.

The current knowledge of the ice properties is already at a level which is nontrivial to implement into detector simulations in full detail, but a number of open questions relevant to IceCube remain:

1. The horizontal scale of IceCube, \(\sim 1 \text{ km}\), is an order of magnitude larger than for AMANDA. Deeply penetrating radar surveys of South Pole ice have shown that over this scale the vertical locations of the dust bands that determine the optical properties can have variations of up to several tens of meters. Such possible horizontal variations in the dust bands would cause significant variations in the optical properties and must therefore be measured so they can be included in the simulation and reconstruction. Optical loggers [6], continuously measuring the level of emitted DC light scattered back into the logger, can be used to roughly determine the vertical locations of the most significant dust bands. In this way a three-dimensional map of the dust bands is recorded. This is done during deployment with the dust logger attached to the end of the string. Loggers will be used on strings along the detector perimeter and on some in the central part to cover the entire detector area. The dust loggers can resolve cm-thick ash bands corresponding to volcanic deposits.

A complementary method is to use down-going muon data and look at hit rates versus depth for individual strings. The varying ice properties will translate into large variations in hit rates, thereby enabling the identification of dust bands. This method, used initially in AMANDA, has a resolution of a few tens of meters.

2. In case pressure spheres are used for the DOMs which are more transparent further down in the UV, the region below 340 nm, for which no pulsed AMANDA data exists,
should be probed in IceCube. This can be done with the same methods used in AMANDA, using in-situ pulsed light sources with wavelengths down to the cutoff. Fitting time-of-flight distributions between known emitter and receiver locations with simulations of photon propagation yields scattering and absorption independently.

3. As mentioned in the previous section, the properties of the hole ice could be relevant for event reconstruction and simulation. In addition to the ideas outlined in that section, a dedicated camera module could be used to obtain information on bubble distributions around the DOMS. Using a dual-camera module, it could be looking up to see bubbles between the module and the DOM above, and looking down to see bubbles on its surface.

2.5.3 Status

On the hardware side, there is ample experience within the project in building and operating dust loggers (used in Antarctica and Greenland) and pulsed light sources (used in AMANDA). The main tasks will be to design, build, and test such devices for IceCube, and these tasks will affect cable design, DAQ design, software etc.

The analysis techniques used to extract optical properties from pulsed light source data are highly refined in AMANDA. There is also plenty of experience with analyzing and interpreting dust logger data.

2.5.4 Monitoring considerations

The ice properties are not varying within the geologically very short time scales pertaining to the IceCube project. The mapped optical properties will be stored in a database for use in simulations and event reconstruction, but there is no apparent need for monitoring of these properties.

2.5.5 Major WBS dependencies

The main dependencies for ice properties are on In-Ice Devices (1.3.1) and Deployment (1.2.3) for the dust loggers, and on In-Ice Devices (1.3.1) for the fits to flasher data. The development of calibration software tools depends on the availability of software and simulations under Data Systems (1.4).

3 High-level calibrations

Once the recorded raw data, the digitized waveforms, have been calibrated as described in the previous section, i.e., their properties translated into time, charge and position for each hit, the events can be reconstructed. At this stage attempts are made to fit hypotheses for a number of event types (single and multiple muon tracks, cascades) and the likelihoods for these possibilities are determined. The aim is to determine the direction and energy of muon
tracks and cascades as precisely as possible. Some elements of the high-level calibrations will be performed online, e.g., some calibration data is acquired periodically during normal data taking through the DAQ. Other high-level calibrations are made off-line, after reconstruction, and are not part of normal DAQ operations.

In general, most of these high-level calibrations are conceptually part of WBS 1.5.1 Detector Verification and will be described in more detail in that framework. Here follows a description at a higher level of these physics calibrations.

3.1 Vertex resolution (WBS 1.5.3.2.6)

The vertex resolution for cascades will be measured with data from pulsed in-situ light sources located at known positions in the ice. The energy dependence of the vertex resolution will be studied for cascade energies from $\sim 1 \text{ TeV}$ to 10 PeV by varying the light output of these sources and by combining data from the flasher boards (405 nm) with data from the even brighter nitrogen laser Standard Candles (337 nm).

3.1.1 Requirements

Accurate vertex reconstruction for cascades is required for optimal energy reconstruction. AMANDA experience has shown that it is possible to reconstruct point-like sources (cascades, lasers, LEDs, etc) with a resolution of 2-5 m. For double-bang ν_τ events individual vertices must be identified and properly reconstructed.

3.1.2 Plan

- Calibrated LED flashers [3] and lasers [11] can be used to emulate the light output of a cascade. Calibrations must be performed at various depths and at varying distances from the vertical axis of the detector to account for variations in optical properties of ice and to study fully and partially contained cascades.

- The calibration of double bang events can be done in two ways: 1) Firing two LEDs with a time delay corresponding to the tau time of flight. This imposes specific design requirements on the DAQ and hardware. 2) Data from two different LEDs can be combined offline in software by introducing the appropriate time delay. This can be done since the waveforms are available. However, this method does not allow triggering effects to be studied since the data that are combined come from different events. Another disadvantage is that effects like saturation are not properly taken into account.

- Monte Carlo simulations of neutrino induced cascades (both single and double bang) will predict the performance of the detector.
3.1.3 Status
Single vertex calibration has been performed with lasers (532 nm, 337 nm) and LED flashers (370 nm, 470 nm) with AMANDA. This method is well tested. Double-bang vertex calibration has not been performed. Either of the proposed methods is not possible with AMANDA hardware. Software has to be written. Flashers, lasers, etc designed with these requirements in mind.

3.1.4 Major WBS dependencies
The main dependency for vertex resolution calibration is on Reconstruction (1.5.2) for software and In-Ice Devices (1.3.1) for hardware (standard candles and flashers). The development of calibration tools depends on the availability of software and simulations under Data Systems (1.4).

3.2 Pointing accuracy and pointing resolution (WBS 1.5.3.2.5)
3.2.1 Requirements
The accuracy to which the direction of muon tracks can be determined has a limit given by the uncertainty in the scattering angle in the neutrino-nucleon interaction. For low energies, $E < 1$ TeV, this is about 1 degree, decreasing with higher neutrino energies.

For point-source searches, the separation of two or more neutrinos must be maximized. This should be smaller than the sigma in the neutrino-nucleon scattering angle at low energies, and as small as possible at higher energies.

For double bang (ν_τ) events the angular resolution is dictated by the lever arm between the bangs and the position resolution of the vertices. For example, two vertices separated by 250 m and with a resolution of 5 (3) m results in an angular resolution of 2.3 (1.4) degrees.

3.2.2 Plan

- Events that simultaneously trigger IceTop and IceCube constitute a data sample with well-defined track directions (as the result of the long lever arm) that can be used to calibrate IceCube’s angular response and pointing accuracy. IceTop will determine the location of shower cores at the surface to TBD accuracy, and the direction of muon bundles to TBD. The details of this calibration will be presented in a separate document [10].

- A complementary measurement of the angular response can be done by tracking the shadow of the moon by measuring the accompanying depletion in muon flux. This method is restricted to angles close to the horizon. The advantages of this method over using IceTop-tagged muons are (1) that zenith angles below the horizon, down to about 25 degrees, can be studied, and (2) the air showers are lower energy than those
triggering IceTop and thus single muon events can be more easily found (IceTop events in coincidence will be dominated by muon bundles).

3.2.3 Status

A similar technique was successfully used by AMANDA with SPASE-2 data. Moon tracking is a novel idea, currently being explored by AMANDA.

3.2.4 Major WBS dependencies

The main dependencies for pointing calibration are on IceTop (1.3.2) and Reconstruction (1.5.2). The development of calibration tools depends on the availability of software and simulations under Data Systems (1.4).

3.3 Energy calibration (WBS 1.5.3.2.6)

The energy of the secondary lepton (e, μ, or τ) created in a neutrino-nucleon interaction can be measured only to a certain degree, by sampling the energy deposited in the detector, which can then be related to the secondary lepton energy, which in turn is related to the initial neutrino energy. Energy calibration divides into three sub-categories: (a) cascade energies, (b) single muon energies, and (c) energies of muon bundles. These energies are calibrated with different techniques.

Reconstructed muon events are divided into four types, depending on where the neutrino-nucleon vertex is located relative to the detector: through-going, contained, stopping and starting. Contained muons have both the creation vertex (the start) and the point where they have lost all their energy (the stop) within the effective detector volume, so their entire energy is deposited inside it. This enables the energy to be measured on an event-by-event basis. Through-going muons start and stop at unknown points outside the detector and so deposit an unknown fraction of their energy in the detector.

Electrons will lose their entire energy in electromagnetic cascades very close to the hadronic showers at their points of creation.

Muon and cascade energy is calibrated in a number of ways:

- Detailed detector simulations are used to establish the probabilistic connection between detected energy, energy deposited in the detector volume and the actual energy of the lepton in the event. From these simulations the energy can be estimated on an event-by-event basis (for certain kinds of events).

- Atmospheric neutrinos can be used as a test beam with known energy spectrum by making a comparison to the neutrino spectrum measured with IceCube. Normalize to a known flux, e.g., the down-going flux of atmospheric muons.

- Use calibrated light sources, standard candles [11], with well-defined light output. These can be calibrated in the lab before deployment.
3.3.1 Requirements

Various low-level quantities serve as fundamental building blocks for the energy calibration. All of these quantities must be measured in the lab, i.e., prior to deployment. Some must also be measured and/or monitored in-situ. Energy calibration also depends on the ability to measure other high-level quantities, such as the event vertex or track direction.

No calibration source may produce spurious signals in the detector, such as crosstalk, at a level which impairs the ability to reconstruct any cascade vertex, direction, or energy by more than TBD, as measured by TBD (e.g., Monte Carlo simulations).

3.3.2 Plan

All low-level calibrations will be performed during PMT and DOM testing in the Northern hemisphere. The results of these calibrations will be stored in a database for convenient future access.

The subset of low-level calibrations which can be performed without specialized equipment will be repeated prior to deployment, and the result compared to those stored in the database. These quantities comprise the measurements of relative gain, saturation behaviour and dynamic range.

After deployment, the relative gain, saturation behaviour and dynamic range of each DOM are measured with a frequency sufficiently high to enable us to track changes in the energy response to 10%.

Low-energy cascade energy calibrations are performed using the following techniques. All techniques are checked against one another for consistency.

1. Down-going muon bremsstrahlung events deposit amounts of energy which are compared with the prediction from Monte Carlo simulations.

2. The energy spectrum of atmospheric electron and/or tau neutrino events is compared with the prediction from Monte Carlo simulations.

3. DOM LEDs are flashed at predetermined light levels to simulate cascade signals.

4. Up-going atmospheric muon neutrino events which have a starting vertex contained in the detector fiducial volume provide an energy spectrum which is compared with the Monte Carlo prediction. Cascade direction is determined from the outgoing muon.

High-energy cascade energy calibrations are performed using the following techniques. All techniques are checked against one another for consistency.

1. DOM LED flashers (see above) will be used for energies up to 10 TeV.

2. In-situ nitrogen lasers with well-defined light output, “standard candles” [11], will be used for the highest energies, in the TeV-EeV range.
3. The lasers will be located throughout the array in such a way that the maximum number of physics processes can be simulated. Examples of such processes are fully contained cascades and various kinds of partially contained cascades. The shape and direction of the emitted light pulse will vary.

4. The lasers will be operated at varying light levels, digitally controlled through the DAQ. Relative light levels will be known to 10% accuracy, and absolute light level to TBD%. Light levels will be calibrated in the lab prior to deployment for each laser individually, and monitored in-situ.

5. Cross-talk created during operation of the lasers must not exceed TBD in order not to compromise the integrity of the data and interfere with event reconstruction.

6. Tau double-bang events are simulated with time-correlated firings of LED flashers in widely separated DOMs and/or widely separated laser modules.

3.3.3 Major WBS dependencies

The main dependency for energy calibration is on Reconstruction (1.5.2) for software and In-Ice Devices (1.3.1) for hardware (standard candles and flashers). The development of calibration tools depends on the availability of software and simulations under Data Systems (1.4).

4 Summary of calibration devices

This section summarizes the dedicated in-situ devices needed for calibrations that are to be deployed with the strings. It also lists some of their properties.

1. DOM on-board LEDs are needed for (a) charge calibrations of individual DOMs in the lab and in the ice. They should have adjustable light output for linearity measurements and be possible to attenuate down to a low light level for SPE measurements.

2. LED flasher boards [3] are needed for (a) interstring geometry measurements, (b) simulations of cascades for energy and vertex calibration. These flasher should have adjustable light output over a wide energy range, give pulses of TBD ns width, and operate at a wavelength close to (1) the average wavelength of detected photons and (2) the optimal ice properties. The light should be emitted with a known angular distribution to enable accurate simulations.

3. Powerful standard candles [11] (presumably nitrogen lasers) are needed for (a) energy calibrations in the high-energy region, (b) vertex reconstruction studies. These laser modules should have calibrated (to within TBD%) and stable light output levels, adjustable in well-defined steps over six orders of magnitude in corresponding cascade energy. Energy range above that of the flashers, up to EeV. Controlled digitally through
the DAQ. Known angular distribution to enable accurate simulation. Three different orientations (in separate modules): up, down, sideways, or adjustable orientation (with mirrors) to enable simulation of cascades in different directions.

4. Dust loggers are needed to (a) map the locations of the dust bands over the full horizontal range of IceCube. The dust loggers are used for real-time optical logging of dust concentration during deployment, and have sensitivity for unambiguous identification of main characteristics of dust structure.

5. Pressure sensors (Paros, Kellers) are needed to (a) calibrate the absolute depth of the detector, (b) calibrate the relative depths of the strings, (c) monitoring during deployment to detect if the string gets stuck, (d) reach the target depth.

6. Thermistors are needed to (a) map out the temperature profiles, (b) to tell us when ambient temperature is reached after refreezing. Should cover entire instrumented depth range.

Calibration devices used at the surface during deployment:

1. Cable payout monitoring system (part of cable spool). Real-time readout for immediate detection of stuck string (readout synched with pressure sensors).

2. Optical sensor (laser distance meter) for manual well-depth measurements.

In addition, the IceTop air shower array on the surface can be used for a number of calibrations: (a) to measure the pointing accuracy for reconstructed muon tracks and (b) its angular dependence, (c) to measure the energy in muon bundles penetrating the ice down to the IceCube sensors, (d) to provide a set of tagged down-going muon events.

5 Detector monitoring (WBS 1.5.3.1)

Detector monitoring is discussed in detail in a separate document, the Monitoring Plan [7]. Some monitoring considerations have been discussed in the sections above.

6 Calibration database (WBS 1.5.3.2.8)

Each calibration produces a number of calibration constants, which are to be stored in a calibration database (calDB). Here follows a preliminary list of constants delivered by low-level calibration and needed for high-level calibrations.
6.1 Calibration data from low-level calibrations

- The geometry calibration delivers coordinates \((x, y, z)\) for each DOM.
- The timing calibration delivers constants \((a, b)\) used for the linear translation of local times into universal times. It also gives PMT transit times vs high voltage, both measured in the lab and in the ice.
- The charge calibration delivers, for each DOM: SPE peak and width and linearity curves containing the saturation behavior.
- The ice properties calibration gives a map of scattering and absorption coefficients as functions of depth and wavelength.

6.2 Calibration data needed for high-level calibrations

- All of the high level calibrations depend on timing, charge and geometry calibration through the use of reconstructed data.
- Energy calibration at very high energies, where many PMTs are saturated, relies on PMT linearity and saturation behaviors measured in the lab and stored in the calDB.
- All high level calibrations that use reconstruction or detector simulations also depend on the optical ice properties.

7 Calibrating the first four strings

In January 2005, the first four IceCube strings are deployed. This section presents a brief step-by-step plan for how they will be calibrated (w.r.t. timing, charge, and geometry) in the first field season.

The geometry calibration of the first strings will follow the procedure described above. The following calibrations will be carried out during the Pole season:

1. Deployment data (pressure, well depth) will be combined with a surface survey and drill data to get a preliminary geometry for the new strings.

2. As soon as the DAQ is operational, the RAPCAL timing calibration will be implemented, and a first charge calibration will be performed.

3. Once RAPCAL works, flasher data will be taken for the interstring geometry measurements. On each of the new strings, ten flashers will be run and data collected on all new strings.
4. Depending on how far along AMANDA-IceCube integration has gotten, we can (a) run flashers on string 18 and record data on the new strings, and (b) take data with AMANDA during the IceCube flasher runs. This will give us a valuable cross-calibration and determine the absolute geometry.

Back in the real world, the final stages of the low-level calibrations are performed:

1. Minimum bias muon data is used to determine the position of each DOM individually through muon tomography. This requires that the basic DOM calibrations (timing, charge) are working and that the reconstruction is up and running.

2. The timing calibration is verified using flasher data and down-going muon data.

3. The charge calibration is verified using flasher data and down-going muon data.

References

[7] Requirements for the IceCube Monitoring System WBS Element 1.5.3.1, R. Porrata.

[10] Methods for using IceTop coincidences for IceCube calibrations,
Document in preparation by IceTop group (Bartol).

[11] The case for Standard Candles in IceCube,
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-
7814/Case4StandardCandles.doc.